Unified Framework of Emergent Recursion and the Infinite Whole — Rigorous Edition (v7, Unicode)

Authors and Credits

Primary author: Tomi Ford. Contributing author: Pierre S. Barbee-Saunders (credited for his own mathematical formalism only).

Attribution boundary: Ford-credited sections include relational growth, dialog-derived principles, energy dual flow & cyclic renewal, and the new layer-complementarity & spin formalism. Barbee-Saunders is credited solely for the emergence field E, recursion operator $D\alpha$, octonionic bookkeeping O, and Big-Bang-compatible modeling mentioned in the comparative section.

Edition date: 2025-09-23

Abstract

We axiomatize a triad grammar (0, 1, mix), prove a dimensional-closure result (D = 3 by minimal uniqueness of a normal), and couple the grammar to a layered emergence formalism. This v7 adds a Ford-credited, fully worded formalism for layer complementarity: each layer concurrently exhibits capacity (0) and distinction (1) as complementary densities whose alternation produces a phase (spin). Spin drives absorption/redistribution between dual measures ("light"/"dark"), yielding continuous mixing (input/output) across opposite scales. Under isotropy, the global effect is a spherical, centerless, and relationally constant infinitum.

Table of Contents (selected)

- 1. 1. Notation and Preliminaries
- 2. 2. Axioms (Triad Grammar)
- 3. 3. Dimensional-Closure Theorem (Sketch)
- 4. 4. Emergence Field and Octonionic Law (Definitions) PSB-credited elements
- 5. 5. Coupling Map and Conserved Quantities
- 6. 6. Space-Time Orientation and Arrow of Becoming
- 7. 11. Relational Growth (Ford)
- 8. 12. Comparative Perspectives (Ford + PSB)
- 9. 13. Dialog-Derived Principles (Ford)
- 10. 14. Energy Dual Flow & Cyclic Renewal (Ford)
- 11. 15. Layer Complementarity, Spin, and Spherical Infinitum (Ford) New
- 12. Appendix A. Minimal Calculus on Recursion
- 13. Appendix B. Provenance and Citations

1. Notation and Preliminaries

We use real inner-product spaces with basis e_0 , e_1 , e_2 ; exterior product Λ ; and Hodge dual \bigstar in 3D. Recursion index $n \in \mathbb{N}$. Constants: $\alpha = 7/11$, $\varphi = (1+\sqrt{5})/2$. Define a recursion derivative $D\alpha$ and a layer Hamiltonian $H_n = (\alpha^n) \cdot E_0$.

```
W=e_0 \Lambda e_1 ; J_{\bigstar}={_{\bigstar}(W)} ; K(x)=D\alpha^2x ; I_n=\alpha\cdot I_{n-1}+\delta_n ; q=D\alpha F ; m_n \propto \alpha^{*}(-n) .
```

2. Axioms (Triad Grammar)

A1 Capacity (0). A2 Distinction (1). A3 Mixing. A4 Minimality. A5 Self-verification.

Persistent consequence of interaction: $J\star=\star(e_0\ \Lambda\ e_1)$, the reconciliation current.

3. Dimensional-Closure Theorem (Sketch)

Uniqueness of a carrier normal to any 2-surface of interaction enforces D=3: in D dimensions the unit normals form $S^(D-3)$, hence uniqueness $\Rightarrow D-3=0$.

4. Emergence Field and Octonionic Law (Definitions) — PSB-credited elements

Layered states $\{\psi_n\}$; operators $(D\alpha, T\phi)$; evolution $i\cdot\hbar\psi\cdot\partial\psi_n/\partial t=H_n\cdot\psi_n$; octonionic domains O for triality bookkeeping. These items are credited to Barbee-Saunders.

5. Coupling Map and Conserved Quantities

 $M(capacity) \rightarrow baseline of E; M(distinction) \rightarrow excitation; M(mix) \rightarrow apply D\alpha, T\phi;$ reconciliation axis selects orientation. Coarse-grained conservation: $d/dt(J\star,J\star) \geq 0$.

6. Space-Time Orientation and Arrow of Becoming

The sign of $J \star$ fixes an orientation that coarse-grains to an arrow of becoming (time).

11. Relational Growth (Ford)

Absolute size is undefined for the whole; only ratios are physical. With $D(t)=a(t)\cdot x$ and co-scaled units $u(t) \propto a(t)$, D(t)/u(t)=x. Expansion is a metric change without an external center; a no-boundary whole has zero net reconciliation flux.

12. Comparative Perspectives (Ford + PSB)

Ford: eternal, centerless recursion; relational global constancy. PSB: Big-Bang-compatible expansion via emergence machinery E, D α , O. Unified view: hot starts appear as local high-excitation patches within an infinite whole.

13. Dialog-Derived Principles (Ford)

Present-as-0; Information-as-1; co-creation of time/space; layer genesis by rebalancing; mutual containment (1 in 0, 0 in 1); self-similar infinity; coexistence principle; round-canon analogy.

14. Energy Dual Flow & Cyclic Renewal (Ford)

Useful work writes durable distinctions (information) while consuming free energy. The cosmos drains while it fills; cyclic renewal: erase \rightarrow capacity \rightarrow rewrite. Isotropic reconciliation supports a sphere-like, centerless whole; orbits are balance loci of opposing currents.

15. Layer Complementarity, Spin, and Spherical Infinitum (Ford) — New

- 15.1 Definitions (complementary densities). On layer n let $C_n(x,t) \ge 0$ denote capacity density (0-like) and $I_n(x,t) \ge 0$ denote information density (1-like). Define the complex order parameter $\Psi_n(x,t) = \sqrt{I_n(x,t)} \cdot \exp[i \cdot \theta_n(x,t)]$, where θ_n is a phase. Complementarity is encoded by a parity operator \square with $\square[C_n] = I_n$ and $\square[I_n] = C_n$ at a shifted phase $\theta_n \to \theta_n + \pi$.
- 15.2 Dual continuity (absorption/redistribution). Introduce dual currents J_n (information) and K_n (capacity) with continuity laws:

```
\partial_t I_n + \nabla \cdot J_n = + \kappa_n \cdot C_n - \mu_n \cdot I_n + \Sigma_n (write/erase and cross-layer terms) \partial_t C_n + \nabla \cdot K_n = - \kappa_n \cdot C_n + \mu_n \cdot I_n - \Sigma_n (complementary balance)
```

Here κ_n , $\mu_n \ge 0$ are conversion coefficients; Σ_n accounts for exchange with adjacent layers. These equations formalize continuous absorption ("dark" uptake into capacity) and redistribution ("light" expression as information).

- 15.3 Spin as phase from alternation. Alternation between C_n and I_n induces a phase dynamics $\partial_t \theta_n = \omega_n \gamma_n \cdot \Delta \theta_n + \xi_n$, where $\omega_n \propto \alpha^n$ is the natural frequency, $\gamma_n \ge 0$ is a smoothing coefficient, and ξ_n collects couplings. The layer spin density is $\sigma_n = \partial_t \theta_n$ and the associated vorticity is $\Omega_n = \nabla \times (\nabla \theta_n)$. Non-zero Ω_n implies persistent rotational structure ("spin") at that layer.
- 15.4 Mixing across opposite scales. Let S_+ denote outward (coarse) scales and S_- inward (fine) scales. Conservation under parity implies flux balance $J_n(S_+) \approx -K_n(S_-)$ at stationarity, producing a standing exchange that sustains $\sigma_n \neq 0$. This is the formal statement of input/output mixing driving spin at every layer.
- 15.5 Spherical, centerless infinitum. If the distribution of layer phases θ_n is isotropic on large scales, the average of Ω_n over orientations vanishes while the scalar spin power $\langle |\sigma_n|^2 \rangle$ remains finite. Isotropy at all points enforces a sphere-like (no preferred direction) metric in 3D, consistent with the minimal closure proof. Thus the whole is spherical in the statistical-geometric sense, centerless, and relationally constant while layers keep mixing.
- 15.6 Observable implications. (i) Phase-coupled oscillations between compressive and expressive modes in self-organizing media; (ii) cross-scale anti-correlations of dual fluxes (J_n vs. K_n); (iii) persistent vortex-like features with scale-dependent $\omega_n \propto \alpha^n$; (iv) maintenance of dimensionless ratios despite net metric expansion.

Appendix A. Minimal Calculus on Recursion

 $\label{eq:defDalpha} D\alpha \ f(x) \ = \ lim_{\{\epsilon \to 0\}} \ (\ f(x+\epsilon\alpha) \ - \ f(x) \) \ / \ \epsilon \ ; \ \psi_{\text{\tiny N+1}} \ = \ exp(-iH\Delta t/\hbar\psi) \ \psi_{\text{\tiny N}} \ .$

Appendix B. Provenance and Citations

Ford-credited contributions: §§11, 13, 14, 15. PSB-credited elements: emergence field E, D α , octonionic bookkeeping O, and Big-Bang-compatible modeling in the comparative section. This edition embeds Unicode fonts to ensure all scientific symbols render correctly.